

## 3100Z Multigas Gas Analyser

The Rapidox 3100-Z range includes precision single, dual and triple gas analysis instruments providing powerful functionality and extensive features. Designed for process, research and development applications, this gas analyser range has proven very popular with universities and research institutes worldwide.



Typical gas analysis configurations include a combination of oxygen and another gas. However, other compatible gas sensors arrangements can be specified. Measurable gases include oxygen  $(O_2)$ , carbon dioxide  $(CO_2)$ , carbon monoxide (CO), hydrogen  $(H_2)$ , moisture  $(H_2O)$ , ethylene  $(C_2H_4)$ , chlorine  $(CI_2)$ , methane  $(CH_4)$ , nitrous oxide  $(N_2O)$ , nitric oxide (NO), ammonia  $(NH_3)$ , sulfur dioxide  $(SO_2)$  and ozone  $(O_3)$  to suit the application.

The flow of test gas can be adjusted with the flow gauge/needle valve on the front panel. An optional powerful long-life pump draws a gas sample at a flow rate set by the user between 0-1 litres per minute. Alternatively, the pump can be independently switched off and the unit operated under flowing gas conditions.



Standard features on all models include four fully programmable alarm circuits (volt free contacts), programmable analogue outputs (0-10V and 4-20mA) for each sensor, easy calibration (user selectable gases), RS232 / RS485 / ModBus-RTU communications and complete datalogging software. A type K thermocouple input and sensor is included for independent temperature measurements up to 1250°C, with readings displayed and data logged simultaneously with the gas analysis. The Rapidox 3100 complies with EMC Directive 2004 / 108 / EC. UL/ETL Certification Number: UL-61010-1.

Please contact Cambridge Sensotec for further information or to discuss your requirements.

Though highly configurable to suit individual customer requirements, the Rapidox 3100-Z range possesses a number of standard features to enhance functionality.

- Bespoke sensor combination
- · Fully configurable software
- Fast and accurate response
- Simple calibration procedure
- · Fully programmable outputs
- Data logging

- · Type K thermocouple
- · Four programmable alarms
- Operates on worldwide mains voltage
- Password protection

## **Applications**





Biogas

Chemicals

Combustion

Food



Gas

Glove Boxes

Inert Gas Blanketing

Manufacturing



Medical & Pharmaceutical



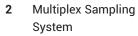
Metal Heat Treatment



Research & Development

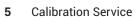





## **Accessories**


























| Specification                 |                                                          |
|-------------------------------|----------------------------------------------------------|
| Oxygen Sensor                 | 10E <sup>-20</sup> ppm-30% zirconia sensor. ±1% accuracy |
| Other Gas Sensors             | For other sensors, see the sensor matrix                 |
| Temperature Sensor            | 0-1250°C range Type K thermocouple, ±1°C accuracy        |
| Max Gas Temperature           | 60°C                                                     |
| Ambient Operating Pressure    | 900mbar to 1100mbar absolute                             |
| Ambient Operating Temperature | 5°C to 35°C                                              |
| Warm-up Time                  | 2-5 minutes at 20°C as standard                          |
| Supply Voltage                | 90-260 VAC, 50/60H:                                      |
| Voltage Outputs               | 0-5V linear, user programmable                           |
| Current Outputs               | 4-20mA linear, user programmable                         |
| Digital Outputs               | RS232 (RS485 option available): ModBus-rtu protoco       |
| Digital Outputs               | data streamed on demand                                  |
|                               | 4mm ID / 6mm OD nipple type                              |
| Sample Connections            | Rectus or Swagelock                                      |
|                               | Front positioned                                         |
| Display                       | Four line OLED displa                                    |
| Analysis Pintonsians          | 150mm (H) x 350mm (W) x 263mm (D                         |
| Analyser Dimensions           | Optional swing handle available                          |
| Weight                        | 5kg as standard                                          |
| Pump Option                   | 0-1 litres per minute, user selectable                   |



## Rapidox 3100 Sensor Matrix

| TC                            | Type K      | >36          | N/A         |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
|-------------------------------|-------------|--------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------------|--------------|--------------|--------------|--------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|----------------|------------------|------------|
| SO <sub>2</sub>               | Œ           | >60          | 12          |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| SO <sub>2</sub>               | EC          | 24           | 12          |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| H<br>E                        | EC          | 24           | 12          |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| He/H <sub>2</sub>             | TCD         | >60          | 12          |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| H <sub>2</sub> S              | EC          | 24           | 12          |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| N <sub>2</sub> O              | Œ           | >60          | 12          |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| C <sub>2</sub> H <sub>4</sub> | Œ           | >60          | 12          |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| NO                            | EC          | 12           | 9           |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| Cl2                           | EC          | 12           | 9           |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| 8                             | EC          | 24           | 12          |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| 00                            | Œ           | >60          | 12          |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| H <sub>2</sub> 0              | CAP         | >36          | 12          |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| CH <sub>4</sub>               | TLD         | >60          | 12          |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| ₽¸                            | Ш           | >60          | 12          |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| CO                            | R           | >60          | 12          |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| O                             | Zr          | 24           | 12          |         |         |         |         |         |         |         |         |         |         |         |              |              |              |              |              |            |            |            |            |           |           |           |           |                |                  |            |
| Gas                           | Sensor Type | Life (Month) | Cal (Month) | 0 -100% | %08 - 0 | %09 - 0 | 0 - 50% | 0 - 30% | 0 - 20% | 0 - 10% | % 9 - 0 | 0 - 3 % | 0 - 2 % | 0 - 1 % | 0 - 5,000ppm | 0 - 3,000ppm | 0 - 2,500ppm | 0 - 2,000ppm | 0 - 1,000ppm | 0 - 500ppm | 0 - 250ppm | 0 - 200ppm | 0 - 100ppm | 0 - 60ppm | 0 - 50ppm | 0 - 20ppm | 0 - 10ppm | -65°C to +20°C | -100°C to + 20°C | 0 - 1250°C |

Note: Not all sensor combinations are possible due to interference and cross-sensitivity effects. Please contact Cambridge Sensotec for advice

CAP = Capacitance dewpoint Sensor

TLD = Tunable Laser Diode

IR = Infra-Red Sensor

Zr = Zirconia Sensor